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Appendix A. OSTRC overuse injuries questionnaire

We consider OSTRC data derived from a longitudinal study on 24 waterpolo players
within the Dutch Olympic monitoring program [Verhagen et al., 2021]. The study is carried
out through the repeated administration of the OSTRC questionnaire that has been filled
in by the athletes on a weekly basis over the 72-week-long follow-up. The data contain
athletes’ weekly exposure (for different types of training and competition [Injury et al.,
2020]) as well as data on athlete’s health complaints.

We focus on the dichotomous questionnaire outcomes, which are formulated in a way that
responding 1 to any of the questions indicates the presence of a health complaint affecting
the corresponding domain. We consider four items (i.e. 4 main questions) – listed in Table 1
– and three time-varying covariates:

• time spent on a sport-specific activity in the last 7 days (in hours),
• time spent on a strength training in the last 7 days (in hours),
• time spent on a competition in the last 7 days (in hours).

The interval between consecutive occasions at which the questionnaire was administered is
one week, equal for all participants.

Table 1. The questions selected for the injury risk assessment. The last
column denotes the percentage of response 1 (which means the answer to
the question was “yes”) to each question during the follow-up.

Question %
Participation: Have you had any difficulties participating in training due to in-

jury, illness, or other health problems during the past seven days?
22.36

Modification: Did you have to modify your training due to injury, illness, or
other health problems during the past seven days?

12.29

Performance: Have your injury, illness, or other health problems affected your
performance during the past seven days?

14.72

Symptoms: Have you experienced symptoms/health complaints during the
past seven days?

22.89

In Figure 1 we visualise for each athlete the time spent on sport-specific activity and
strength training. The responses to each of the 4 questions are visualised in Figure 2. One
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Figure 1. Visualisation of the covariates on time spent on sport-specific
activity and strength training. Each panel corresponds to an athlete.

can easily see that athletes are monitored over different time periods and that for some
athletes there are gaps: periods in which no data were collected.



APPENDIX TO MONITORING ATHLETE HEALTH THROUGH LATENT STATE MODELLING 3

22 23 24

19 20 21

16 17 18

13 14 15

10 11 12

7 8 9

4 5 6

1 2 3

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

Time

R
e
s
p
o
n
s
e

Question

Modification

Participation

Performance

Symptoms

Figure 2. Visualisation of the responses to each of the 4 questions. Jitter
has been added to the 0/1 outcomes. Each panel corresponds to an athlete.
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Appendix B. Statistical methods: latent Markov models

We will start with a non-technical introduction to our approach. Readers that are familiar
with hidden Markov models can skip this section. Subsequently, full details for readers with
a more extensive background in mathematics and statistics are provided.

B.1. A nontechnical introduction to Latent Markov Models. For a given athlete,
we make a statistical model about the athlete’s status, which represents to what extend the
athlete is prone to injury. We assume this to be on an ordinal scale, for example “not at risk”,
“mildly at risk” and “severely at risk”. We assume that the states are ordered such that the
first state corresponds to least injury prone and the last state to most injury prone. Over
time, for example a day or week, an athlete’s status may change. We assume this change
is probabilistically described by a Markov chain. This entails that the status at time t+ 1
only depends on the present status (time t) and not on the further past. Probabilities to
change from one state at time t to another state at time t+1 are summarized in a transition
matrix. For example

Πt+1 =

 0.8 0.2 0.0
0.1 0.9 0.1
0.01 0.04 0.95

 . (1)

Note that all numbers in this matrix are in [0, 1] and rows add up to one. Regarding the
interpretation of this matrix, the number 0.2, is the probability to become “mildly at risk”
at time t+1, while being “not at risk” at time t. Similarly, the number 0.95 is the probability
to remain in “severely at risk”. Each of the elements in the matrix is denoted by Πt+1(d | u),
where d ∈ {1, 2, 3} and u ∈ {1, 2, 3}. Hence, Πt+1(2 | 1) = 0.2 and Πt+1(3 | 3) = 0.95.

In reality, these probabilities are in fact unknown and part of the model specification. We
assume covariates are measured over time. For simplicity, let’s assume just one covariate xt,
which denotes training intensity at time t. We will assume the elements in Πt+1 to depend
on xt. For this, we need to ensure a specification such that the rows of Πt+1 sum to one.
Let’s see how this works for row 1. We take

log Πt+1(2 | 1)
Πt+1(1 | 1)

= γ1,2xt and log Πt+1(3 | 1)
Πt+1(1 | 1)

= γ1,3xt.

Together with Πt+1(1 | 1)+Πt+1(2 | 1)+Πt+1(3 | 1) = 1 this ensures that for any choice of
the parameters γ1,2 and γ1,3 all probabilities are in [0, 1] and sum to 1. For the second and
third rows of Πt+1, we can do the same thing using parameters (γ2,1, γ2,3) and (γ3,1, γ3,2)
respectively.

Regarding interpretation of these coefficients, if for example γ1,3 > 0, then an increase in
training intensity will increase Πt+1(3 | 1), which is the probability to become “severely at
risk” at time t + 1, given the athlete is “not at risk” at time t. The size of γ1,3 quantifies
the effect, though it is difficult to interpret this size because of the log-scale. This is similar
to difficulty in interpretation of estimated coefficients in a logistic regression model.

To recap, once the parameters γi,j , i 6= j, have been specified, then for any choice of
training intensity xt over time period 1, . . . T , we have a probabilistic model for the status
on the athlete. By repeated stochastic simulation –simulating from the model using random
numbers– we can assess the effect of a particular training schedule on an athlete’s status.

Of course, the parameters γi,j are unknown and need to be determined by information
provided by data. Let’s for simplicity assume at each time instance the athlete answers just
one question on a binary scale that provides information about his/her status (the OSTRC
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results includes multiple questions, and this can be dealt with in a similar way). Let Yt
denote the reply to the one question at time t. Let’s consider answer “1” as an affirmative
answer. Let Ut denote the status at time t. We assume

P(Yt = 1 | Ut = u) = λ(u),

where 0 < λ(1) < λ(2) < λ(3) < 1. This means that if the status of the athlete is
“not at risk” (u = 1), the athlete will answer in an affirmative manner with probability
λ(1). Similarly, if he/she is “mildly at risk” (u = 2) or “severely at risk” (u = 3), an
affirmative answer is given with probabilities λ(2) and λ(3) respectively. The constraint
λ(1) < λ(2) < λ(3) therefore implicitly assumed the question is formulated such that an
athlete is more likely to answer “yes” if experiencing some degree of risk.

Over time, we observe the results of the posed question. The athlete’s status however,
is never observed: it is latent. Statistical methods enable to obtain parameters estimates
for γi,j (i 6= j) and (λ(1), λ(2), λ(3)). Moreover, estimates for the latent paths can be
constructed.

The postulated model can be extended to include multiple athletes, multiple covariates
and multiple questions in a rather straightforward way, though the bookkeeping using in-
dices can be a bit cumbersome. In the upcoming section i indexes athletes, j indexes
questions and t indexes time.

B.2. General setup. In the following, as common in statistics, we denote random quan-
tities by capital letters and their realisations (i.e. observations) by lower case letters. Let
yijt ∈ {0, 1} denote the response variable to the jth question in the OSTRC question-
naire administered by the ith subject in week t, with i = 1, . . . , n, j = 1, . . . , J and
t ∈ 1, . . . , Ti. We use the convention that yijt = 1 means that the question has been
answered by “yes”. The response vector for subject i at time t is given by the vector of all
answers yit = (yi1t, . . . , yiJt) ∈ {0, 1}J . For subject i, let xit be the vector of time-varying
covariates at time t. In our application, we take these to be the times spent in the last 7
days (in hours) on sport-specific activity and strength training, where we have standardised
both covariates. We define x̃it = [1,xit], which is useful in defining the statistical model
that includes an intercept.

Following the latent Markov approach, for each subject i, we assume the existence of
a latent process (Ui1, ..., UiT). The latent variable Uit represents the injury status of the
ith subject in week t. The sequence of latent variables Ui1, ..., UiT is assumed to follow
a (first-order) Markov chain with state space {1, . . . , k}, where k is the number of latent
states. For mathematical convenience, we assume that the responses at time t for subject
i, Yi1t, . . . , YiJt, are independent conditional on the latent state Uit.

B.2.1. Approach. We adopt a fully Bayesian approach. This will facilitate predicting risk
to injury of athletes, while taking uncertainty in parameter estimates into account. We
show how missing values in either covariates or questionnaire answers can be dealt with.
In particular, observing different athletes over different time spans poses no restriction
and therefore there is no need to artificially add missing data, as would be needed for
example when fitting the model with the R-package LMest ([Bartolucci et al., 2017]). The
Bayesian approach entails that all unknown parameters in the model are equipped with a
prior distribution, which reflects information (or lack of information) about each parameter.
Once specified, the Bayesian paradigm postulates that all inferential conclusions are based
on the posterior distribution. As this distribution is not available in closed form, we use the
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probabilistic programming language Turing ([Ge et al., 2018]) within the Julia-language
([Bezanson et al., 2017]) to sample from the posterior.

B.2.2. Specification of the latent process. We assume that the number of latent states equals
k = 3. For each subject, we assume its initial state can be any of the three latent states with
equal probability (these prior probabilities can be adjusted, if information is available). Let
Πi,t+1 denote the transition matrix for individual i for time t to time t+1. We assume only
transitions to adjacent states are possible and parametrise the transition matrix by vectors
γ12, γ21, γ23 and γ32 such that

Πi,t+1 = softmax .

 0 〈x̃it,γ12〉 −∞
〈x̃it,γ21〉 0 〈x̃it,γ23〉
−∞ 〈x̃it,γ32〉 0

 , (2)

where softmax . denotes that the softmax function is to be applied to each row of the
matrix (recall softmax : Rd → Rd is defined by softmax(x) = (ex1 , . . . , exd)/

∑d
i=1 e

xi). If
any component of xit is missing, we set Πi,t+1 equal to the identity matrix. This corresponds
to assuming the latent state does not change between times t and t+ 1.

B.2.3. Specification of conditional response probabilities. We denote the number of questions
in the questionnaire by J . In the olympic waterpolo dataset J = 4. In case subject i at time
t answers “yes” to question j, then yijt = 1, else yijt = 0. We assume that the distribution
of the response variables depends only on the latent status by imposing

P(Yijt = 1 | Uit = u,xit) = λj(u) (3)

for each i, j, t and u ∈ {1, . . . , k}. Moreover, we require these conditional probabilities to
satisfy the constraint

0 < λj(1) < λj(2) < ... < λj(k) < 1 (4)
for j = 1,...,J. This assumption has been used before in [Bartolucci et al., 2009] and ensures
identifiability. The constraint (4) implies that the latent states are ordered such that the
individuals in the first state are those with the best status (least injury prone) and indi-
viduals in the last state are those with the worst injury status. Note that while (3) is the
same for all subjects, each subject’s injury status is modelled by a separate latent process.

B.2.4. Prior specification. For γ12, γ21, γ23 and γ32 we impose conditionally independent
standard multivariate normal priors with covariance matrix σ times the identity matrix.
We assign σ the Exponential distribution with mean 1. The underlying ideas is to provide
tractable mildly “uninformative” priors.

For each question j ∈ {1, . . . , J} we need to specify a prior on λj := (λj(1), . . . , λj(3))
satisfying the ordering constraint in (4). We give a construction for that. Let Zj(1), Zj(2),
Zj(3) be independent random variables with the standard Exponential distribution. Set
ψ(x) = 2 logistic(3x/4) − 1, where logistic(x) = 1/(1 + e−x) and note that ψ maps [0,∞)
to [0, 1). Then set

λj(ℓ) = ψ

(
ℓ∑

i=1

Zj(i)

)
, j = 1, . . . , J, ℓ = 1, . . . , k. (5)

In Figure 3 we show histograms based on 10_000 samples from the prior. As all Zj(i) are
supported on the positive halfline and ψ is increasing, (4) is satisfied.
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Figure 3. Visualisation of the distribution of λj by Monte-Carlo simula-
tion.

B.2.5. Path prediction. Given the estimated model, interest lies in predicting the most likely
injury state based on the latest state occupied and the scheduled weekly training exposure.
The predicted states over time follow a path that illustrates the progression of injury status
over time based on the time-varying training exposure. This indicates the predicted injury
risk for an individual athlete at the next time point and serves as a support for sports
practitioners and coaches in decision-making during the training process.

Assume that at time T parameters have been estimated based on all subjects in the study.
Additionally assume for subject i a training schedule has been determined for the upcoming
S weeks, i.e. weeks T + 1, . . . , T + S. This implies xi,T+1, . . . , xi,T+S have been specified.
Then we can forward simulate scenarios from the latent process {Uit}T+S

t=T to assess injury
risk for subject i under the proposed training schedule. This is simply an instance of Monte
Carlo simulation where we use a large number of forward simulations which are initialised
according to inferred probabilities for UiT .

B.2.6. Implementation. Recursive computation of the loglikelihood was implemented in
the Julia-language in the package LatentMarkovQuest (https://github.com/fmeulen/
LatentMarkovQuest). Subsequently the package Turing was used to draw from the pos-
terior using the No-U-Turn-Sampler (NUTS). Cf. [Hoffman et al., 2014]. We used multi-
threading and in all reported results ran 1000 iterations for each of 6 independent chains
(note that by default this implies 2000 iterations are performed, of which the first half are
discarded as burnin). Details can be found in Section D.

Appendix C. Application

We ran the NUTS-sampler on the olympic waterpolo dataset. Rhat values (Gelman-
Rubin diagnostics, see e.g. Chapter 13 in [Lambert, 2018]) were clearly distinct from 1,
indicating lack of convergence of the MCMC chain. Figures 4 and 5 show trace- and density
plots for γ12 and Z3 := (Z3(1), Z3(2), Z3(3)). Corresponding plots for other parameters
show similar behaviour. Clearly, depending on how the chain was initialised, the chain
samples close to either of two modes. This explains the indicated lack of convergence. It
appears that there are two model explanations for the data and it is not directly clear which
of those is the more likely one. By default, the chain is initialised by sampling parameter
values from the prior distribution. To better understand the sampler’s performance, we ran
the sampler twice more, with all chains initialised from a parameter vector close to either
of the modes.

https://github.com/fmeulen/LatentMarkovQuest
https://github.com/fmeulen/LatentMarkovQuest
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Figure 4. Trace- and density plots of iterates for γ12. Burnin was removed.
Initialisation of chains by sampling from the prior.

In Figures 6 and 7 we show trace- and densityplots for (Z3(1), Z3(2), Z3(3)) when ini-
tialising all chains from either of the modes (which we will call mode 1 and mode 2). The
reported Rhat values are close to 1 in both cases, indicating convergence. We conclude
that we are faced with a rather challenging stochastic simulation problem where the pos-
terior distribution is (at least) bimodal. It turns out that there is a nice interpretation of
either of the modes. For each component of Zj (j = 1, . . . , 4) we computed its posterior
median values and converted that to λj := (λj(1), λj(2), λj(3)). The resulting values are
summarised in Table 2. One can see that mode 2 essentially corresponds to collapsing the
first two latent states. That is, whether being in injury state 1 or 2, the athlete will virtually
always answer “no” to all questions. For mode 1, it stands out that questions 2 and 3 (on
modification and performance respectively) distinguish the 3 latent states.

Ideally, one would implement a sampler that traverses both modes corresponding to their
likelihood. Parallel tempering (Brooks et al. [2011], Chapter 11) would be an option for this.
Here, as the modes are rather distinct, we have used Laplace approximation as a simpler
alternative. From this, it turns out that mode 1 has overwhelming posterior probability
(near 1). In Section E we provide mathematical details. It demonstrates that a 3 latent
state model is to be preferred over a 2 latent state model. It is interesting to note that
mode 2 corresponds to the posterior mode reported by Turing when no MCMC-sampling
is used.
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Figure 5. Trace- and density plots of iterates for Z3. Burnin was removed.
Initialisation of chains by sampling from the prior.

Mode 1 Mode 2
1 2 3 1 2 3

j

1 0.004 0.970 0.991 0.002 0.012 0.982
2 0.002 0.400 0.964 0.001 0.004 0.543
3 0.002 0.541 0.964 0.001 0.004 0.651
4 0.011 0.979 0.992 0.006 0.023 0.988

Table 2. Median posterior values for mode 1 (left) and mode 2 (right). Each
table shows λj(k), where j = 1, . . . , 4 corresponds to rows and k = 1, . . . , 3
corresponds to columns. For example, under mode 1, the estimated median
probability that an athlete in latent class 2 will answer affirmative to question
3 is 0.541.

In the following, we therefore report results obtained by initialising all chains near mode
1. In Figure 9 we visualise for each regression parameter its posterior mean and 2.5%, 25%,
75% and 97.5% posterior percentiles. A similar visualisation is shown in Figure 8 for all
parameters appearing in the response probabilities.

C.1. Interpretation of the results.
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Figure 6. Trace- and density plots of iterates for Z3. Burnin was removed.
Initialisation of chains by sampling from mode 1.

(1) As we have standardised the covariates, setting xit to the zero vector yields transi-
tion probabilities when each of the covariates is in fact set to its average (over all
athletes). Then, the posterior mean estimates for γud (u 6= d) can be substituted in
the transition probability matrix displayed in Equation (2). This gives0.89 0.11 0.00

0.38 0.55 0.07
0.00 0.24 0.76

 . (6)

We view these probabilities as a baseline as these are the transition probabilities for
an athlete doing average sport-specific activity and strength-training.

(2) Now for each off-diagonal element, we can assess how its value if influenced by
the covariate vector. For example, element (2, 3), which is equal to 0.07 depends
on the inner-product of x̃it and γ23. In Figure 9 all coefficients ending at “[1]”,
“[2]” and “[3]” relate to the model’s intercept, the covariate sport and the covariate
strength respectively. Clearly, all credible intervals for the intercept do not contain
zero. From all other coefficients, the only coefficients for which the 50% credible
interval does not contain zero are γ12[2], γ12[3] and γ32[3]. From this, we cautiously
conclude (note that there is considerable uncertainty, most likely due to small sample
size):
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Figure 7. Trace- and density plots of iterates for Z3. Burnin was removed.
Initialisation of chains by sampling from mode 2.

(a) For the transition from state 1 to state 2, the effects of both sport and strength
are negative: this means that increasing these will reduce the probability of
transitioning.

(b) For the transition from state 3 to 2, the effect of strength is positive: this means
that increasing strength will reduce the probability of transitioning.

C.2. Future scenario predictions. We consider athletes starting from either of the initial
states combined with either of the following trainingschedules:

• Low intensity where we consider 1 hour spent on sport-specific activity both and
2 hours on strength training on each of the 14 days. On standardised scale, this
corresponds to xit = [−1.80,−0.68].

• Average intensity where we set xit = [0, 0] for all 14 days.
• High intensity where we set xit = [1, 1], which means both sport-specific activity

and strength training are at the average plus one times the standard deviation in the
dataset (on all 14 days). This corresponds to 15.33 hours of sport-specific activity
and 5.57 hours of strength training.

We forward simulated the latent states for 14 weeks for all posterior draws of the regression
coefficients (in total 6000, as 6 chains ran for 1000 iterations each). In Figure 10 we show
the (marginal) distribution over each of the three states at each time.
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Figure 8. Summary of posterior distribution for all parameters appearing
in the response probabilities. The circle depicts the posterior mean. The
orange bar connects the 25% and 75% posterior percentiles, while the black
bar connect the 2.5% and 97, 5% posterior percentiles.

Appendix D. Details on implementation of Bayesian method

D.1. Implementation using probabilistic programming. We use Hamiltonian Monte
Carlo to sample from this distribution (more specifically, the No-U-Turn-Sampler). This
can be conveniently done in the probabilistic programming language Turing.

The basic implementation reads as follows:

� �
@model function logtarget(𝒪s, p)

σ ~ Exponential(1.0)

γ12 ~ filldist(Normal(0.0, σ), p.DIM_COVARIATES)
γ23 ~ filldist(Normal(0.0, σ), p.DIM_COVARIATES)
γ21 ~ filldist(Normal(0.0, σ), p.DIM_COVARIATES)
γ32 ~ filldist(Normal(0.0, σ), p.DIM_COVARIATES)

Z1 ~ filldist(Exponential(), p.NUM_HIDDENSTATES)
Z2 ~ filldist(Exponential(), p.NUM_HIDDENSTATES)
Z3 ~ filldist(Exponential(), p.NUM_HIDDENSTATES)
Z4 ~ filldist(Exponential(), p.NUM_HIDDENSTATES)

θ = ComponentArray(γ12 = γ12, γ23 = γ23, γ21 = γ21, γ32 = γ32,
Z1=Z1, Z2=Z2, Z3=Z3, Z4=Z4)

Turing.@addlogprob! loglik(θ, 𝒪s, p)
end
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Figure 9. Summary of posterior distribution for regression parameters.
The circle depicts the posterior mean. The orange bar connects the 25%
and 75% posterior percentiles, while the black bar connect the 2.5% and
97, 5% posterior percentiles.

model = logtarget(𝒪s, p)

chain = sample(model, Turing.NUTS(), MCMCThreads(), 1000, 6)� �
In the first part of the model definition the prior specification is given. The observations are
in the data-structure Os and all that is needed is a function that computes the loglikelihood
efficiently. We provide details on this computation in Section D.2. This function, called
loglik, needs to implemented such that automatic-differentiation libraries can operate on
it to compute the gradient of the log posterior density. p contains the number of covariates,
the number of hidden states and number of questions. Once the model has been specified,
MCMC-sampling can be carried out to draw from the posterior.

Remark 1. Chapter 29.4.4 in [Murphy, 2023] considers Bayesian Hidden Markov Models
and remarks that a Gibbs sampler that alternates sampling from the smoothing distribution
and updating the parameter θ may suffer from bad mixing due to high correlation between
the latent path and θ. Here, we follow what he calls “collapsed” inference, where the latent
states of each person have been integrated out.

D.2. Recursive likelihood computation. It is well known that the likelihood can be
computed efficiently in a recursive way. Here we propose to use the backward information
filter, which can be viewed as a message passing algorithm. This is well known in the
literature, see e.g. [Cappé et al., 2005] and [Van der Meulen, 2022]. Below, we denote the
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Figure 10. Risk trajectories under three different starting configurations
and three different training scenarios. Each bar shows the predicted (mar-
ginal) probabilities (obtained from the method outlined in Section B.2.5) for
being in either of the 3 states during 14 weeks, where week ”0” represents
the initial state of the athlete.

entrywise product of two vectors by �: for a, b ∈ Rk, a� b = (a1b1, . . . , akbk). Let 1 ∈ R3

denote the vector with all elements equal to 1.
To reduce notational overhead, first assume just one subject, with responses y1, . . . , yT ,

where yt = (yt1, . . . , yt4), and latent process u1, . . . , uT .
Define u 7→ ht(u) = P(Yt = yt, . . . ,YT = yT | Ut = u). As u ∈ {1, . . . , k} this map

can be identified with the vector ht = (ht(1), . . . , ht(k)). The backward information filter
consists of the following steps:

• for t = 1, . . . , T , let

gtj =

{
λj if ytj = 1

1− λj if ytj = 0

and set gt = �J
j=1gtj ;

• set hT = gT and
ht = gt � (Πi,t+1ht+1) , t = T − 1, . . . , 1; (7)

• set h0 = Π1h1, where Π1 is the prior on the initial latent state.
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The output of this scheme, h0 is the likelihood. Notationally, we have suppressed any
dependence on the parameter vector θ which under model specification described in the
section 5.1. is given by the θ obtained by concatenating γ12, γ21, γ23, γ32 and λ1, . . . ,λJ .
If we would do so, then indeed θ 7→ h0(θ) is the likelihood function. The extension to
multiple subjects/participants is straightforward, we run the backward information filter
for each subject and multiply the resulting likelihoods.

If an element in ytj is missing, we can simply set gtj equal to a vector of length k
containing only ones. If a covariate vector xt is missing, we need to specify Πt separately.
Here, we have chose to set Πt equal to the identity matrix in that case, meaning no latent
state-transition at times of a missing covariate.

Remark 2. Direct implementation of the scheme in (7) is numerically unstable. Instead,
each time ht is computed we normalise it, i.e. we divide each element in the vector by the
sum of all elements. If we denote this sum by Sθ(ht), then it follows that

logL(θ) = logh0(θ) +
T∑
t=1

logSθ(ht). (8)

This avoids numerical underflow problems.

Appendix E. Laplace approximation to approximate the posterior
probability of each of the modes

Suppose we have a multimodal distribution with an unnormalized density function p̃(x),
such that the true density is p(x) = c−1p̃(x), where c is an unknown normalisation constant.
Assume that the locations of K modes, x∗

1, x∗
2, . . . , x∗

K , are known and that the Hessian
matrix of − log p̃(x) can be evaluated at each mode. Using Laplace approximation we can
estimate the probability mass associated to each mode.

E.1. Laplace Approximation at a Single Mode. For a single mode at x∗
k, the Laplace

approximation constructs a Gaussian distribution qk(x) that matches the local curvature of
the mode. The steps for mode k are:

(1) Compute the Hessian matrix of the negative log-probability at the mode:
Hk = −∇2 log p̃(x)

∣∣
x=x∗k

This matrix Hk is positive definite if x∗
k is a local maximum.

(2) The Laplace approximation for the region around mode k is the Gaussian distribu-
tion:

qk(x) = N (x | x∗
k,H−1

k ) =
|Hk|1/2

(2π)d/2
exp

(
−1

2
(x − x∗

k)
THk(x − x∗

k)

)
E.2. Approximating the full multimodal distribution. The full distribution is ap-
proximated as a mixture of these Gaussians:

p(x) ≈
K∑
k=1

wk qk(x)

where wk is the weight of mode k, with
∑K

k=1wk = 1. The weight wk is proportional to the
integral of p(x) over the region of mode k. Using the Laplace approximation, this integral
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is estimated as: ∫
mode k

p(x)dx ≈
∫
qk(x)dx ·

p̃(x∗
k)

|Hk|1/2
· (2π)

d/2

c

Thus, approximately, wk ∝ p̃(x∗
k) · |Hk|−1/2. The unknown constant c and the factor (2π)d/2

cancel out when the weights are normalized. Thus,

P(mode k) = wk =
p̃(x∗

k) |Hk|−1/2∑K
j=1 p̃(x∗

j ) |Hj |−1/2

References

F. Bartolucci, M. Lupparelli, and G. E. Montanari. Latent markov model for longitudinal
binary data: An application to the performance evaluation of nursing homes. The Annals
of Applied Statistics, pages 611–636, 2009.

F. Bartolucci, S. Pandolfi, and F. Pennoni. Lmest: An r package for latent markov models
for longitudinal categorical data. Journal of Statistical Software, 81:1–38, 2017.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65–98, 2017. URL https://doi.org/10.
1137/141000671. Publisher: SIAM.

S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, editors. Handbook of Markov Chain
Monte Carlo. Chapman & Hall/CRC, Boca Raton, FL, 2011. ISBN 978-1-4200-7941-8.

O. Cappé, E. Moulines, and T. Rydén. Inference in Hidden Markov Models. Springer, 2005.
H. Ge, K. Xu, and Z. Ghahramani. Turing: a language for flexible probabilistic inference.

In International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9-
11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, pages 1682–1690, 2018.
URL http://proceedings.mlr.press/v84/ge18b.html.

M. D. Hoffman, A. Gelman, et al. The no-u-turn sampler: adaptively setting path lengths
in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

I. O. C. Injury, I. E. C. Group, R. Bahr, B. Clarsen, W. Derman, J. Dvorak, C. A.
Emery, C. F. Finch, M. Hägglund, A. Junge, S. Kemp, et al. International olympic
committee consensus statement: methods for recording and reporting of epidemiological
data on injury and illness in sports 2020 (including the strobe extension for sports in-
jury and illness surveillance (strobe-siis)). Orthopaedic journal of sports medicine, 8(2):
2325967120902908, 2020.

B. Lambert. A student’s guide to bayesian statistics. 2018.
K. P. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023. URL
http://probml.github.io/book2.

F. Van der Meulen. Introduction to automatic backward filtering forward guiding. arXiv
preprint arXiv:2203.04155, 2022.

E. Verhagen, M. Lang, R. Watson, and M. Moen. Injuries and illness in olympic level water
polo athletes–a three-season prospective study. Dtsch Z Sportmed, 72:195–202, 2021.

https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
http://proceedings.mlr.press/v84/ge18b.html
http://probml.github.io/book2


APPENDIX TO MONITORING ATHLETE HEALTH THROUGH LATENT STATE MODELLING 17

Department of Mathematics, Vrije Universiteit Amsterdam, The Netherlands
Email address: f.h.van.der.meulen@vu.nl

Amsterdam UMC, The Netherlands
Email address: l.vandergraaff@amsterdamumc.nl

Amsterdam Collaboration on Health & Safety in Sports, Department of Public and Occu-
pational Health, Amsterdam Movement Sciences, Amsterdam UMC, The Netherlands

Email address: Evert.Verhagen@uefa.ch


	Appendix A. OSTRC overuse injuries questionnaire
	Appendix B. Statistical methods: latent Markov models
	B.1. A nontechnical introduction to Latent Markov Models
	B.2. General setup

	Appendix C. Application
	C.1. Interpretation of the results
	C.2. Future scenario predictions

	Appendix D. Details on implementation of Bayesian method
	D.1. Implementation using probabilistic programming
	D.2. Recursive likelihood computation

	Appendix E. Laplace approximation to approximate the posterior probability of each of the modes
	E.1. Laplace Approximation at a Single Mode
	E.2. Approximating the full multimodal distribution

	References

